
  
Short A bstract — The time-ordered product framework 
of quantum field theory can also be used to understand 
salient phenomena in stochastic biochemical networks. 
It can be used to derive Gillespie’s Stochastic 
Simulation Algorithm, as well as generalizations 
thereof including particle-based spatial stochastic 
simulation algorithms. 
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I. OUTLINE 
HE time-ordered product framework of quantum field 
theory can also be used to understand salient phenomena 
in stochastic biochemical networks. It can be used to 

derive Gillespie’s Stochastic Simulation Algorithm, as well 
as generalizations thereof that simulate hybrid systems 
combining stochastic events together with ordinary 
differential equations. It can be used to derive maximum-
likelihood parameter learning algorithms for stochastic 
chemical kinetics, and to understand the flow of molecules 
(or other particles) through reaction schemes that contain 
irreversible transitions, such as reaction schemes occurring 
in the study of signal transduction. And it can be used to 
carefully rederive and generalize particle-based spatial 
stochastic simulation algorithms. 

II. A FEW DETAILS 
The master equation (chemical or more generally) for a 

stochastic system may be expressed as 

� 

dp /dt =W ⋅ p(t) 
where 

� 

W is the time-evolution operator. This equation has 
formal solution 

� 

exp(tW ) ⋅ p(0). If W can be decomposed 
as a sum

� 

W =W0 +W1 , then there is a perturbation theory 
for 

� 

exp(tW ) in terms of 

� 

exp(tW0 )  and its perturbations by 

� 

W1 . Indeed, the Time-Ordered Product Expansion (TOPE) 
formula [1] for the solution of a master equation can be 
expressed as [2]: 

This formula leads to exact algorithms, unlike (eg) the Trotter 
Product Formula for the exponential of a sum of matrices. 
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Using TOPE, the global time-translation operator W 
appearing in the master equation can be decomposed into 
W0, consisting of the (negative) diagonal part of all reaction 
processes and discrete-time events, and W1, the off-diagonal 
part of all discrete-time events. For pure chemical reaction 
networks this decomposition leads to the Gillespie 
Stochastic Simulation Algorithm (SSA). Note that the 
recursive exponential form immediately enables nested 
perturbations for multiscale modeling. Unlike the Dyson 
series in quantum field theory which is asymptotic, for these 
stochastic processes the TOPE converges. This algorithmic 
interpretation of TOPE has been extended to reacting objects 
with parameters [3], hybrid reaction/ODE systems [1,3], and 
parameter-learning algorithms for stochastic chemical 
kinetics [3,4]. 

Calculations show the following results relevant to spatial 
stochastic simulation algorithms. Multimolecular reactions 
can be reduced to multiple reactions of the form A+B 
C. One may break up the time evolution operator into 
various parts and use TOPE iteratively on them. Thus, 
decompose W = Wdiff + Vreact - Dreact, and Dreact= Ddecay + 
Dinteract where Dinteract is for “forward” reactions eg. A+B  
C and Ddecay is for “backwards” reactions eg. C  A+B. All 
D and V entries are nonnegative. We consider Gaussian 
interaction kernels (propensity as a function of distance). As 
a starting point, W0 = Wdiff can be solved exactly using the 
Heat Kernel. As an inner loop, W1 = Wdiff - Ddecay can be also 
solved exactly since the forward reaction propensity Ddecay of 
any extant particle is constant. Next, W2 = W1 - Dinteract 
yields a plethora of Gaussian integrals, summable subsets of 
which correspond to spatial stochastic simulation algorithms. 

III. CONCLUSION 
Much can be learned about stochastic biochemical models 

using simplified versions of the tools of QFT. 

REFERENCES 
[1] Mattis D.C. and Glasser M.L. (1998) The uses of quantum field theory 

in diffusion-limited reactions. Rev.Mod. Phys. 70, 979–1001 
[2] Mjolsness E. and Yosiphon G (2006) Stochastic Process Semantics for 

Dynamical Grammars. Annals of Mathematics and Artificial 
Intelligence, 47(3-4) 

[3] Yosiphon G. and Mjolsness E. (2010) Towards the Inference of 
Stochastic Biochemical Network and Parameterized Grammar 
Models. In Learning and Inference in Computational Systems Biology, 
(Lawrence N., Girolami M., Rattray M., and Sanguinetti G., Eds.) 
MIT Press. 

[4] Wang Y, Christley S., Mjolsness E., and Xie X. (2010) Parameter 
inference for discretely observed stochastic kinetic models using 
stochastic gradient descent. BMC Systems Biology 4:99.

Time-ordered products for  
stochastic systems biology 

Eric Mjolsness1 

T 


